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LETTER TO THE EDITOR 

The transverse structure of a spin chain with 
Dzyaloshinskii-Moriya-type interaction 

A A Zvyagin 
Max-Planck-Institut fiir Festkorperforschung, Hochfeld-Magnetlabor Grenoble CNRS, 
BP166X. F-38042 Grenoble Cedex. Francet 

Received ZApril1991 

Abstract. The transverse helical spin structure of the uniaxial spin (s = t) chain with 
exchange-relativistic non-uniform inleractioo is found. The magnetic behaviour of this 
system is considered. 

There is now growinginterest in low-dimensional magnetic systems. The magnetization 
and themagneticsusceptibilityofsuchspinsystemsaredeterminedmostly by relativistic 
interactions. Among the low-dimensionalsystems there are systems that haveexchange- 
relativistic coupling of Dzyaloshinskii-Moriya type. Theoretical studiesof these systems 
usually describe the spin oscillations about their classical equilibrium positions. One can 
see from these approximations that the weak ferromagnetism phenomenon (i.e. non- 
zero spontaneous magnetization) is found. Recently the author of this letter [I] and 
Alkaraz and Wreszinski [Z] found the ground state energy of the spin chain with Dzya- 
loshinskii-Moriya coupling. Eckle and Hamer [3] then calculated the finite-size ground 
energy of the anisotropic Heisenberg chain in an external magnetic field for twisted 
boundary conditions. 

In this paper I investigate theoretically the ultra-quantum limit (s = i), for which 
exact solutions can be studied, and show that the Dzyaloshinskii-Moriya coupling leads 
to helical transverse spin structure for such one-dimensional uniaxial spin systems. 
As is known, the one-dimensional spin (s = 4) system with Dzyaloshinskii-Moriya 
interaction does exist (see, for example, [4]). The Hamiltonian of the system considered 
has the form 

x =  -&E [J(u;u;++l + U y , 4 + l )  + D(cTpy,+, - uy,u;+l) +Jzu:u;+,] (1) 

where J and J ,  are the exchange constants, D is the Dzyaloshinskii-Moriya interaction 
constant, and @Y2' are the Pauli operators. With the help of the standard Bethe 
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procedure [ 5 ]  we derive the set of equations for the quantum numbersp, and the energy 
of the state with the (N - m)th value of the r-projection of the total spin: 

m 

exp(ip,w = ( - 1 ) m - l  exp(-i k = l  z %pj,pk)) (2) 

(3) 
m 

E = -(NJ,/2) t (J' + D z ) ' n  ( B  - cos(pj t E ) )  
J=1 

whereNis the number of sites. Expression (2) imposescyclic boundary conditions. Here 
(in ( a 3  (3)) 

W j , P a )  =2tan-'{[Bsin((p, -~d/2) l i [co~(E + (pi +pkY2) 

One can see that the Dzyaloshinskii-Moriya coupling, as usual, affects the shifts of the 
quasimomentap, (the magnitudes of these shifts are equal to E ) .  

Let us find and treat the ground state energy of the system considered. 
(i) If B 3 1, the ground state of the spin chain is ferromagnetic, and its energy is 

(ii) If B < 1, the ground state of the uniaxial spin chain corresponds to the zero value 
we have 

equal to E = E / N  = -J,/2. 

of the z-projection of the total spin, i.e. m = N/2 [6]. Taking the limit N+ 
for thegrounds ta te , i f - I<R<l ,  
E = J ,  + (5' + D2)'IZ sin I 

dr sinh((rr - I)x)/sinh(,zx) sinh(Ix) cosh = -B.  (6)  

If B = 1. the ground state energy has  a form 
E = (J2 + D*)lIz(ln4 - a). 

Finally. if B < - 1, the ground state energy is equal to 
(7) 

E = J ,  + (Jz + Dz)i/z sinh 2 exp(-2nu) tanh(nv) cosh U = -B. (8) 
" = I  

The average values are equal to zero ((e)') = 0) in the ground state. We know (see 
[7]) that the plane spin structure of the chain is determined by correlators.such as (*)e$,). Let the projection of the spin in the nth site on the axis which makes the 
angle q,, with the axisx be equal to unity; the projection of the spin in the (n  + r)th site 
on theaxiswhich makes the angle q.+,with theaxisxisequal to unity too. The maximum 
probability then occurs at the angles qn and q.+,given by: 

tan(pl, - q n t r )  = (d.o:t, - u+$,t,)/(6&+, + ~ ! b g + , ) .  (9) 
To treat the nearest-neighbour ordering, it is enough to consider the case r = 1 only. 
With the help of (6)-(8) we obtain 

i f B > l  

K I J  i f B > l .  
Equation (10) means that in the non-trivial case where J ,  < (J' + Dz)'", the helical 

(10) W q ,  - qn+l )  = 
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transverse structure of the spin chain is obtained. The shift of the helical structure is 
determined by the constant of Dzyaloshinskii-Moriya coupling, as is given by classical 
consideration of the spin system [8]. 

The ground state energy isferromagneticfor B 3 1 at any value of the magnetic field 
h directed along the z axis and for B < 1 for h > [(J* + D2)’” - J J / p  = h, (I. is the Bohr 
magneton). The r-projection of the total spin ( y N )  has its nominal value. Naturally, 
there is no transverse spin structure in these cases. 

= E - ph. For B < 1, if 1 - y < 1 (the 
value of the magnetic field is little less than h,) the ground state energy is equal to 

If B 1 the ground state energy is equal to 

E* = - (J , /2)  + phy - [ ( J 2  + O*)’fi - JJ(1 - y )  + d ( 1  - ~ ) ~ / 2 4  + . . .. (11) 

(12) 

Ify 1 (h * 0) for B < -1 we have 

= E - phy + ( J z  + D’)’’’ sinh[c,,y + (n2c2y3/3co) + . . .]. 
The coefficients c, are defined from 

x 

CO + c~(Y*  + c 4 d .  . . = 

For B = -1 the ground state energy is determined by 

(-1)” cos(ncu)/2cosh(nv). 
n = - D S  

= E - phy  - (Jz + D2)’12~2y2/4 + . . .. 

= E - phy - ( J 2  + D 2 ) 1 ’ z ~ ( x  - A)y* sin A/@, + . . ._  

(13) 

(14) 

Finally, for -1  < B < 1 we have 

It can be concluded from (11)-(14) that for h < h, if B < 1 the transverse spin helical 
structure is obtained. The helical structure’s shift is the same as in the absence of a 
magnetic field. 

Using the method of [9-111 we derived the sets of equations describing the thermo- 
dynamics of the spin chain with Dzyaloshinskii-Moriyacoupling. With the help of those 
equations one can see that (IO) still holds for the case T #  0 (Tis the temperature) if 
B < 1 at any value of the magnetic field. 

I would like to thank Professor P Wyder from the Max-Planck-Institut fiir Festkor- 
perforschung, Hockfeld-Magnetlabor Grenoble, for hospitality, and Dr R Rammal for 
helpful discussions. 
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